Ecological Intensification of Corn-Based Cropping Systems

Dan Walters dwalters1@unl.edu

University of Nebraska

Achim Dobermann Ken Cassman M.A.A. Adviento-Borbe J. Specht H. Yang

Today's Presentation

Adviento-Borbe et al. 2007. Global Change Biology 13:1972-1988 Verma et al. 2005. Agric. and Forest Meteorology 131:77-96

Compare the Global Warming Potential of "normal" irrigated and rainfed corn-based systems against "intensified" production regimes.

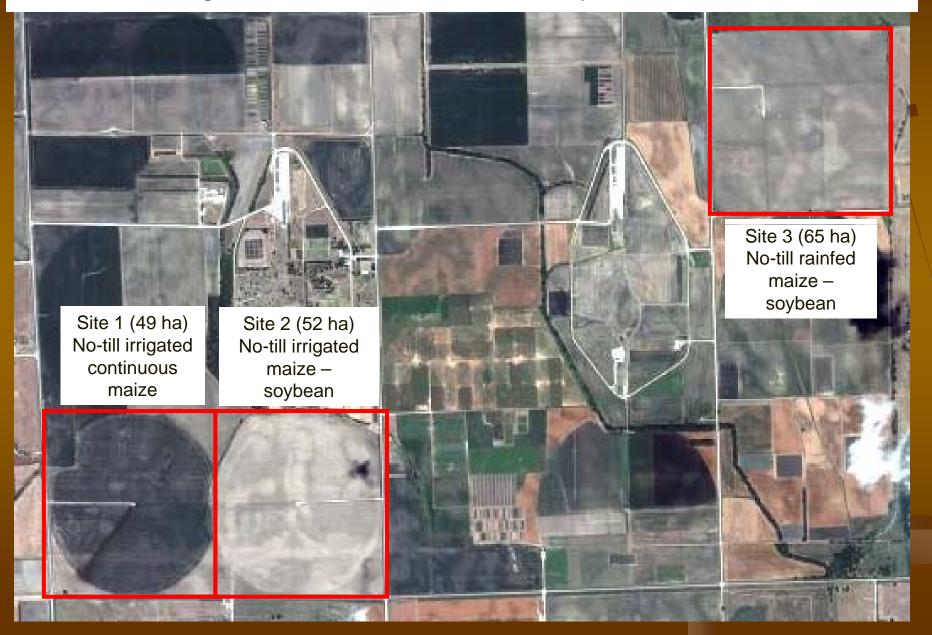
Global Warming Potential

- GWP Represents the effect of the cropping system on total greenhouse gas emissions including:
 - net carbon sequestration
 - trace gas emissions (N₂O and CH₄) and
 - CO₂-C from fossil fuel use
- In a sense (a lower) GWP is also a measure of improved resource use efficiency, minimized environmental impact and higher production efficiency.

Common Assumptions

 Corn – soybean rotation is a more sustainable system then continuous corn

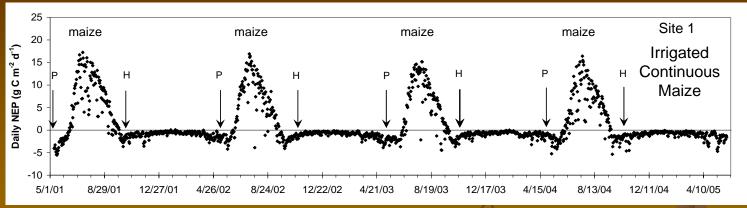
 Conservation tillage (no-till) is required to accumulate soil organic matter (sequester C and reduce GWP)

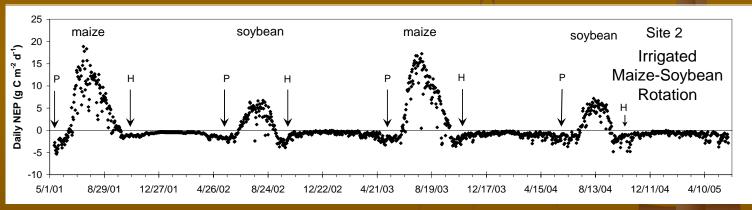

 Any attempt to intensify corn systems leads to increased N losses and GHG emissions

GWP of "Normal" Irrigated and Rainfed Corn Systems

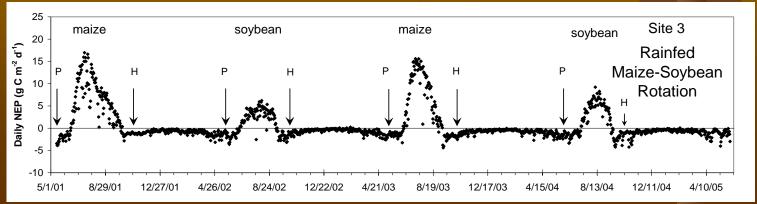
- Four years of data showing full 365 day carbon balance, fuel use and trace gas emissions
- Irrigated yield averages are 65% of yield potential
- Rainfed yield averages are 48% of yield potentail

Carbon Sequestration Research Facility


at the UNL Agricultural Research and Development Center, Mead, NE


Definitions

- NEE = <u>Net Ecosystem Exchange of CO₂-C</u>
 - Represents net overall balance of CO₂-C for the system or [Carbon in Carbon out]
 - [Photosynthesis Resp_{soil} Resp_{plant}]
- NBP = <u>Net Biome Productivity</u>
 - equivalent to Net Carbon Sequestration
 - [NEE Grain C removal]
- **GWP** = **G**lobal **W**arming **P**otential
 - Represents the effect of the cropping system on total greenhouse gas emissions including trace gas emissions (N₂O and CH₄) and CO₂-C from fossil fuel use


Daily Net Ecosystem Exchange

UNL
Carbon
Sequestration
Project

A positive value indicates flux of CO₂-C to the surface

Net Biome Productivity, g C m⁻² Site 1 – Continuous Irrigated Corn

Average annual Net Carbon Sequestration = -51 g C m⁻² yr⁻¹

	Year 1 2001-02	Year 2 2002-03	Year 3 2003-04	Year 4 2004-05
	Maize	Maize	Maize	Maize
Annual Net Ecosystem Exchange (NEE)	517	424	424 381	
Grain C removal at harvest (C_g)	-521	-503	-470	-470
Est. CO ₂ –C release in irrig. water	43	39	49	30
Net Biome Productivity	7 to 28	-69 to -50	-77 to -52	-102 to -87

Range in Net Biome Productivity assumes that 25% or 75% of CO₂-C emission from Irrigation water is undetected by the eddy covariance tower.

Net Biome Productivity, g C m⁻² Site 2 – <u>Irrigated Corn/Soybean</u>

Average annual Net Carbon Sequestration = -92 g C m⁻² yr⁻¹

	Year 1	Year 2	Year 3	Year 4
	2001-02	2002-03	2003-04	2004-05
	Maize	Soybean	Maize	Soybean
Annual Net Ecosystem Exchange (NEE)	529	-48	-48 572	
Grain C removal at harvest (C _g)	-518	-183	-538	-171
Est. CO ₂ -C release in irrig. water	41	26	45	21
Net Biome Productivity	21 to 42	-225 to -212	45 to 68	-241 to -231

Range in Net Biome Productivity assumes that 25% or 75% of CO₂-C emission from Irrigation water is undetected by the eddy covariance tower.

Net Biome Productivity Site 3 – Rainfed Maize/Soybean

Average annual Net Carbon Sequestration = -16 g C m⁻² yr⁻¹

	Year 1 2001-02	Year 2 2002-03	Year 3 2003-04	Year 4 2004-05
	Maize	Soybean	Maize	Soybean
Annual Net Ecosystem Exchange (NEE)	510	-18	397	-12
Grain C removal at harvest (C_g)	335	153	297	157
Net Biome Productivity	175	-171	100	-169

Contribution of Crop Production Fossil Fuel Inputs to CO₂-C Emissions

Annual Average, 2001 – 2004

Source	Site 1 Irrigated Corn		Site 3 Rainfed Corn		Site 2 Irrigated SB		Site 3 Rainfed SB	
	g C m ⁻²	%	g C m ⁻²	%	g C m ⁻²	%	g C m ⁻²	%
Nitrogen	16.9	32.0	9.3	39.1	0.1	0.6	0.1	1.5
Irrigation	13.3	25.5	-	-	7.7	51.3	-	-
Drying	11.0	21.2	6.7	28.1	-	-	-	-
Machinery	3.6	7.0	2.5	10.4	2.5	16.9	1.8	30.4
Depreciable ¹	1.4	2.7	0.8	3.4	1.2	8.2	0.7	11.9
Seed	4.8	9.2	3.5	14.5	2.2	14.3	2.2	35.9
Herbicide	1.3	2.4	1.0	4.4	1.3	8.8	1.2	20.4
Insecticide	0.03	0.1	0.003	0	-	-	-	-
TOTAL	52.1		23.8		15.1		6.0	

¹Depreciable energy is the annual proportion of emissions associated with the manufacture of machinery used in production operations

Average Annual Global Warming Potential (GWP) a C m⁻²

(Average 2001-2004 or 4 cropping seasons)

	Site 1	Site 2	Site 3
	Irrigated continuous	Irrigated corn-	Rainfed corn-
	corn	soybean rotation	soybean rotation
(1) Annual NEE	421	244	219
(2) Grain C removal during harvest (C _g)	-491	-353	-235
(3) Estimated CO ₂ -C from irrigation water (I _c)	-40	-33	
(4) Site C balance = (1) + (2) + (3)	-80 to -100	-117 to -134	-16
(5) N ₂ O flux (g CO ₂ -C eq.)	-51	-49	-40
(6) CH ₄ flux (g CO ₂ -C eq.)	-1	5	4
(7) Production C-costs	-54	-33	-15
(8) Net GWP = (4) + (5) + (6) + (7)	-186 to -206	-194 to -211	-67

A negative number indicates a net source of CO₂-C to the atmosphere

GWP of "Intensive" Irrigated Corn Systems

Ecological Intensification Project – Lincoln NE

Ecological Intensification

 Central hypothesis: an optimal balance of high productivity, sustainability and minimal environmental impact can be achieved by fine-tuning of management towards better exploitation of crop yield potential.

Site: Lincoln, NE, UNL East Campus (1999 – 2005)

Crop rotation (main plots)

CC Continuous corn

CS Corn – Soybean (corn in odd years)

SC Soybean – Corn (corn in even years)

Plant Population (subplots)

P1 Corn: 30k 28-31,000 plants/acre

P2 Corn: 37k 35-41,000 plants/acre

P3 Corn: 44k 38-47,000 plants/acre)

Management Intensity (sub-subplots)

M1 recommended fertilizer management based on soil testing.

Maize: UNL recommendation for 200 bu/acre yield goal

M2 intensive management aimed at yields close to yield potential.

Maize yield goal 300 bu/acre, higher NPK rates, micronutrients,

N in 3-4 splits

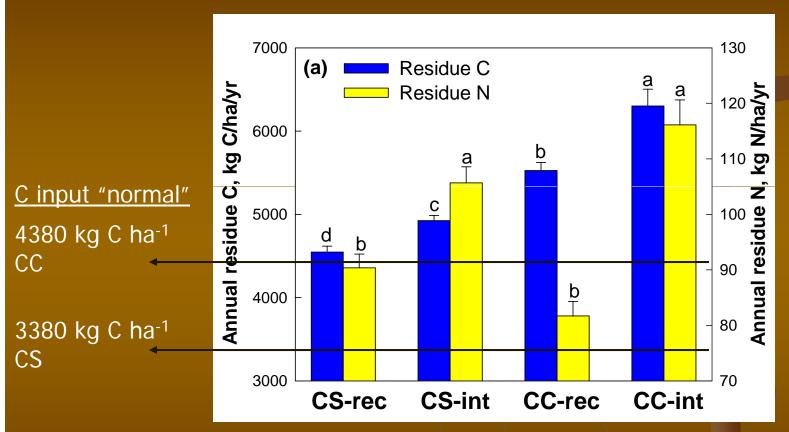
Ecological Intensification Project

CC & CS systems: Corn yields

Treat	ments	Corn grain yield (bu/acre) ²							
Density ¹	Fertilizer	Avg ³	1999	2000	2001	2002	2003	2004	2005
Continuo	us Corn								
P1	M1	223	-	214	223	178	255	247	221
P2/3	M2	244	-	229	252	242	265	266	208
Corn / So	Corn / Soybean								
P1	M1	235	219	225	230	221	268	261	223
P2/3	M2	256	257	248	249	243	285	287	220

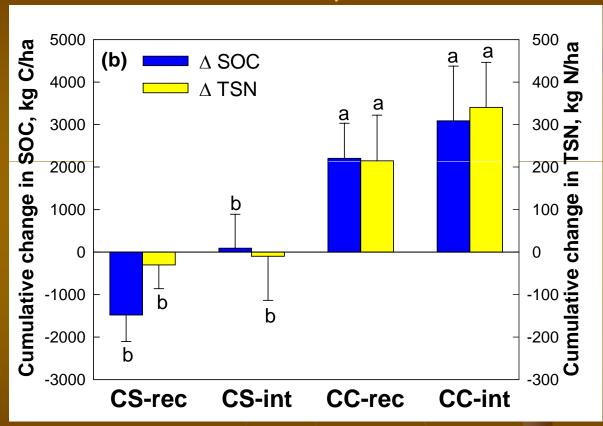

¹ M2 treatment with highest yielding plant density: P2 in 2000, 2003 and 2005; P3 in 1999, 2001, 2002 and 2004.

²Hybrid: P33A14 (113 d) in 1999-2000


P33P67 (114 d) in 2001-2002 P31N28 (119 d) in 2003-2004

P31G68 (119d) in 2005

³ Average of 2000-2005



C & N input with crop residues, Lincoln, NE

Averages for corn and soybean crops grown during 2000-2005 CS-rec corn-soybean rotation, recommended management CS-int corn-soybean rotation, intensive management CC-rec continuous corn, recommended management CC-int continuous corn, intensive management

Change in soil C and N, Lincoln, NE

Soil samples collected in June 2000 and 2006, 0-30 cm CS-rec corn-soybean rotation, recommended management CS-int corn-soybean rotation, intensive management CC-rec continuous corn, recommended management CC-int continuous corn, intensive management

System-level N use efficiency, Lincoln, NE

	CS-Rec	CS-Int	CC-Rec	CC-Int
Annual fertilizer N input, lb N/a	64	156	183	272
Annual N removal with grain, lb N/a	208	216	160	176
Change in total soil N, 0-12", lb N/a	-27	-9	195	309
Nitrogen use e	efficiency			
Ib N in C&S grain/lb N applied	3.25	1.38	0.87	0.65
Ib grain N + change in soil NIb N applied	2.83	1.33	1.94	1.78

corn and soybean grown during 2000-2005

CS-rec corn-soybean rotation, recommended management

CS-int corn-soybean rotation, intensive management

CC-rec continuous corn, recommended management

CC-int continuous corn, intensive management

Global warming potential, Lincoln, NE

		*				
GWP components		Continuous	corn	Corn-soyl	pean]
		Recom.	Intensive	Recom.	Intensive	
		g C	O ₂ -C equiva	alents m ⁻²	yr ⁻¹	
Agricultural	N fertilizer	22	33	8	18	
production ^a	P, K, fertilizer	0	6	0	6	
	Lime	6	9	6	9	
	Seed, pesticides	5	6	5	6	
	Machinery	2	3	2	3	
	Diesel	9	9	8	8	
	Irrigation	14	14	11	11	
	Grain drying	11	12	9	10	
Total	, -	-69	-92	-49	-71	
Soil C ^b		44	62	-30	2	
Soil N₂O ^c		-32	-57	-25	-34	
Soil CH ₄ ^c		3	3	2	1	
GWP ^d		-54	-84	-102	-102	

Averages for corn and soybean crops grown during 2000-2005. GWP = Agricultural production + Δ SOC + soil N₂O + soil CH₄ (Adviento-Borbe et al., 2007. Global Change Biol. 13:1972-88)

Summary

 Intensification does not necessarily increase GHG emissions and the overall GWP when crops are grown with best management practices at near yield potential levels

 Overall impact of soybean was to decrease soil C sequestration and increase GWP of these corn systems.

Summary

- Corn yield potential varies across locations, from year to year and within a year (planting date). Variation must be understood to exploit yield potential through management.
- Interactions between climate, plant density, and nutrient status determine yield potential and how much of it can be achieved under field conditions.

Reported NEE of Other Ecosystems

Annual NEE g C m ⁻²	Biome and location	Reference	
300 to 500	Irrigated Maize, Nebraska	Verma, et al., 2005	
200	Harvard Forest, Massachusettes	Barford, et al., 2003	
174	Howland Forest, Massachusettes	Hollinger et al., 2004	
80 to 170	U. Michigan Biological Station Forest	Schmidt et al., 2003	
-50 to 200	Wind River Canopy Res. Facility, Wash.	M. Falk, 2004	
270 to 420	Douglas Fir forest, West Coast Canada	Morgenstern, et al., 2004	
50 to 275	Tallgrass prarie, Oklahoma	Suyker et al., 2003	
-18 to 20	Temperate grassland, Alberta, Canada	Flanagan et al., 2002	
-30 to 130	Mediterranean grassland	Xu and Baldocchi, 2003	